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We consider a particle, confined to a moving harmonic potential, under the influence of friction and external
asymmetric Poissonian shot noise �PSN�. We study the fluctuations of the work done to maintain this system
in a nonequilibrium steady state. PSN generalizes the usual Gaussian noise and can be considered to be a
paradigm of external noise, where fluctuation and dissipation originate from physically independent mecha-
nisms. We consider two scenarios: �i� the noise is given purely by PSN and �ii� in addition to PSN the particle
is subject to white Gaussian noise. In both cases we derive exact expressions for the large deviation form of the
work distribution, which are characterized by the time scales of the system. We show that the usual steady-state
fluctuation theorem does not apply in our model and that in a certain parameter regime large negative work
fluctuations are more likely to occur than the corresponding positive ones, though the average work is always
positive.
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I. INTRODUCTION

An understanding of the fluctuation properties of systems
away from thermal equilibrium plays an important role for a
statistical mechanical theory of these systems. Nonequilib-
rium fluctuations can have significant effects in small scale
systems from physics to biology, which become more and
more important in technological innovations. However, from
a fundamental theoretical point of view, not much is known
about the general aspects of nonequilibrium fluctuations,
contrary to our understanding of equilibrium fluctuations.

The simplest generalization of the equilibrium state is a
nonequilibrium steady state �NESS�, which arises physically
due to a balance between driving forces and dissipative
forces acting on the system. One of the simplest nonequilib-
rium systems that can be maintained in a NESS is a Brown-
ian particle, e.g., a spherical colloidal particle in a fluid, con-
fined to a harmonic potential which moves with constant
velocity. In addition to the potential force the particle is sub-
ject to friction and thermal noise from the surrounding fluid.
In this system the driving is due to the time-dependent force
from the moving potential and the dissipation is due to the
friction of the particle in the fluid. In order to maintain the
NESS one has to perform work on the particle, which, in
turn, is partly dissipated in the fluid as heat, which has to be
removed, and partly stored as potential energy in the har-
monic potential. Macroscopically, both the work done on the
system as well as the heat removed from it have to be posi-
tive in the NESS, while deviations from this macroscopic
behavior arise due to fluctuations.

The properties of the work fluctuations in this dragged
particle model have been investigated experimentally and
theoretically in the literature �see, e.g., �1–4��, in particular
with respect to the applicability of the so-called steady-state
fluctuation theorem �SSFT� �cf. �5–9��. This theorem states
that the probability distribution ���p� of observing a particu-
lar value of a scaled dimensionless work value p over time �
satisfies a certain symmetry relation, which can be formu-
lated as �10�

���p�
���− p�

� ec�p, �1�

where � indicates the asymptotic behavior for large � and c
is a constant. Equation �1� represents a refinement of the
second law in that it quantifies the probability of observing
temporary second law violations �negative p� in the NESS.
The SSFT �Eq. �1�� for work fluctuations indeed applies in
the dragged particle model if the noise is modeled as thermal
Gaussian noise �1,2�. Yet, if the noise is modeled as Lévy
noise the work fluctuations do not satisfy the SSFT and one
can show that anomalous fluctuation behavior arises �13,14�.
This result highlights the importance of explicitly verifying a
general relation, such as Eq. �1�, in concrete models.

In the present article we investigate the work fluctuation
properties of the above mentioned NESS model when the
noise from the environment has the characteristics of exter-
nal asymmetric Poissonian shot noise �PSN�, i.e., it is given
as a sequence of one-sided Poisson distributed pulses with
random amplitudes �15�. PSN is a natural description of fluc-
tuations in nature �15,16� and is ubiquitous, e.g., in physics,
electric engineering, and biology. Importantly, PSN general-
izes the usual Gaussian noise, to which it converges in a
certain limit, and is a paradigm of external noise: the dissi-
pation and the noise originate from physically independent
mechanisms �16�. This implies that the noise strength of PSN
does not have to be related to the friction by a fluctuation-
dissipation relation, contrary to thermal noise in the case of
Brownian motion.

PSN allows us to investigate a number of important
physical concepts in the context of nonequilibrium fluctua-
tions: �i� Time scales: PSN introduces additional characteris-
tic times in the system which crucially influence its fluctua-
tion behavior; �ii� Symmetry of the noise: PSN is usually
asymmetric �one sided�; �iii� Singularities: the asymmetry of
the noise gives rise to an effective interaction between the
noise and the potential, leading to an effectively nonlinear
system with singular features. Nevertheless, the work distri-
bution can be calculated in analytical form in our model and
is completely characterized by its time scales. The interplay
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of these time scales leads to certain transitions in the behav-
ior of the work fluctuations, as discussed in a recent Rapid
Communication �17�. Here, we present the full theory of Ref.
�17� including inertial effects. Moreover, we consider the
case where thermal Gaussian noise is superimposed on the
PSN. This Gaussian noise models the effect of additional
thermal noise on the particle, which might be relevant in an
experimental realization of our model.

The article is organized as follows. In Sec. II we introduce
the nonequilibrium particle model under the influence of
one-sided PSN. Symmetries, time scales, and singularities of
this model are discussed in Sec. III. The characteristic func-
tion of the work fluctuations including inertia is calculated in
Sec. IV. In the overdamped regime the characteristic function
simplifies significantly and an analytical treatment is pos-
sible. This allows us to analytically determine the distribu-
tion of the work fluctuations using the method of steepest
descent and investigate the fluctuation properties in Sec. V. If
the effect of inertia is non—negligible the work fluctuations
exhibit time-oscillatory behavior, as studied in Sec. VI. Fur-
thermore, in Sec. VII we discuss the combined effect of PSN
and thermal Gaussian noise on the work fluctuations. We
close with some concluding remarks in Sec. VIII.

II. NONEQUILIBRIUM STOCHASTIC PARTICLE MODEL
WITH EXTERNAL PSN

We consider a particle which moves in a time-dependent
harmonic potential under the influence of friction and exter-
nal noise. The basic equation of motion for the position x�t�
of the particle of mass m in the laboratory frame reads �cf.
�3��

mẍ�t� + �ẋ�t� = − ��x�t� − vt� + ��t� . �2�

Here, the force −��x�t�−vt� stems from a particle confining
potential U�x , t�=��x−vt�2 /2 which is pulled with constant
velocity v. For our purposes it is sufficient to restrict the
discussion to one dimension. The parameter � denotes the
strength of the potential, � the friction coefficient, and ��t�
stochastic noise due to the environment, to be defined below
�cf. Eq. �14��. If the potential moves for a time period �, a
certain amount of work is done on the particle, namely,

W� = − �v�
0

�

�x�t� − vt�dt . �3�

In an experimental setup, where the harmonic potential can
be induced, e.g., via lasers �1�, Eq. �3� is the mechanical
work needed in order to move the potential in time �. If the
potential is stationary �i.e., v=0�, no work is performed at
all. This means that we ignore the work originating from the
stochastic motion of the particle, which is attributed to the
heat �2,18�.

The work is partly dissipated as heat due to particle fric-
tion, and partly stored as potential energy in the potential. In
the steady state the mean value of the work �W�� is positive
since we have to perform a macroscopic amount of work
against the friction in order to maintain a NESS. This is
basically a statement of the second law of thermodynamics
�cf. �19,20��.

The mathematical treatment of our model �Eq. �2�� is sim-
plified if we transform to a coordinate system in a comoving
frame. Let us denote the position of the particle in the co-
moving frame by y�t�	x�t�−vt. The equation of motion for
y�t� then reads

mÿ�t� + �ẏ�t� = − �y�t� − �v + ��t� , �4�

and the work is given by

W� = − �v�
0

�

y�t�dt . �5�

Although the work is expressed in terms of the comoving
coordinate y�t�, Eq. �5� actually gives the work done in the
laboratory frame �3,4�, in whose fluctuations we are inter-
ested here.

We consider model �2� under the influence of external
PSN rather than the usual Gaussian noise so that the motion
of the particle differs in general from Brownian motion. PSN
is specified by a sequence of delta-shaped pulses with ran-
dom amplitudes �k and can be expressed in the form �15�

z�t� = 

k=1

nt

�k��t − tk� , �6�

where nt, the number of delta-shaped pulses in time t, is
determined by the Poisson counting process

P�nt� =
�	t�n

n!
e−	t. �7�

The parameter 	 denotes the mean number of pulses per unit
time �rate of pulses� so that there are 	t pulses occurring in
the time interval �0, t� on average. In that interval, the time
of the kth pulse is uniformly distributed. When a pulse oc-
curs, its amplitude �k is sampled randomly from a distribu-
tion 
���. For 
��� we choose an exponential distribution


��� =
1

�0
e−�/�0, �8�

where all amplitudes � are assumed here to be positive, i.e.,
the PSN that we consider is one sided.

The noise z�t� specified according to Eq. �6� has the char-
acteristic functional �15�

Gz�t��g�t�� = e	�0
���0

�ei�g�t�
���d�−1�dt, �9�

for a general test function g�t�. If 
��� is given by the expo-
nential distribution Eq. �8� one obtains

Gz�t��g�t�� = e	�0
��1/�1−i�0g�t��−1dt. �10�

This characteristic functional implies delta-correlated cumu-
lants �21�, which arise due to the delta shape of the stochastic
pulses in Eq. �6�,
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cn�t1, . . . ,tn� 	 � 1

in

�
n

�g�t1� ¯ �g�tn�
ln Gz�t��g�t���

g�t�=0

= n!	�0
n��t1 − t2� ¯ ��tn−1 − tn� . �11�

The first two cumulants, the mean and the variance of z�t�,
are therefore given by

�z�t�� = 	�0, �12�

�z�t1�z�t2�� − �z�t1���z�t2�� = 2	�0
2��t1 − t2� . �13�

Here, the brackets �¯� denote the usual ensemble average,
which, more precisely, represents a path-integral average
with respect to the probability P�z�t�� of a noise trajectory
z�t� �cf. �3��. Since it is convenient to have a noise with zero
mean, we take in Eq. �2� for ��t�

��t� 	 z�t� − 	�0. �14�

This means that the noise in our model is considered to con-
sist of a random shot noise part and a deterministic part that
is equivalent to a constant negative drift force on the particle.
Since the shot noise acts only one sided by our convention,
the noise ��t� is strongly asymmetric, even though its mean
value is zero by construction.

In contrast to the case of a Brownian particle, the noise is
here external, which implies that the friction coefficient � is
not related to the noise strength by a fluctuation-dissipation
relation. In the absence of driving �i.e., v=0� the stationary
distribution of the particle position is therefore not a thermal
equilibrium distribution in general. However, in a certain
limit the ��t� of Eq. �14� does become Gaussian noise,
namely, if we take the limits

	 → �, �0 → 0, �15�

while keeping

	�0
2 = const. �16�

If this Gaussian noise is considered to be thermal, i.e., origi-
nating from an equilibrium heat bath, the fluctuation-
dissipation theorem requires that this constant is given by

	�0
2 = ��−1, �17�

where � can be interpreted as the inverse temperature of the
heat bath. This leads to

���t�� = 0, �18�

���t���t��� = 2��−1��t − t�� , �19�

while all higher-order cumulants of ��t� are zero. In the lim-
its of Eqs. �15�–�17�, ��t� then represents the standard Gauss-
ian white noise of an equilibrium heat bath.

Limit �15� means that both the waiting time between suc-
cessive pulses �	−1� and their amplitudes ��k� become very
small, i.e., we have very frequent �at every “time step”�,
independent, and very small pulses. This is the signature of
Gaussian noise. The system can then indeed reach a state of
thermal equilibrium if v=0.

III. SYMMETRIES, TIME SCALES, AND SINGULARITIES

The system given by Eq. �2� describes a damped har-
monic oscillator with inertia, driven by a time-dependent
force and by noise. For symmetric noise �e.g., Gaussian
noise� the properties of the work fluctuations in this system
are symmetric with respect to the direction of the pulling
velocity v, i.e., the work distribution can only depend on the
absolute value �v�. However, the presence of asymmetric shot
noise, prescribed by Eqs. �6� and �8�, breaks this symmetry.
Since both the direction of v and the direction of the noise
�given by the sign of �0� can in principle be either positive or
negative, there are in total four different combinations of the
two. It is easy to see that the case v0 and �00 is sym-
metric with the case v�0 and �0�0. Likewise, the case v
0 and �0�0 is symmetric with the case v�0 and �00.
Therefore it is sufficient to discuss only two of the four dif-
ferent cases. In the following we investigate the work fluc-
tuations for v0 and v�0, while �00 always.

The oscillator itself is completely characterized by the
two time scales,

�m 	 m/� , �20�

the inertial time, and

�r 	 �/� , �21�

the relaxation time. Associated with the PSN are two addi-
tional characteristic time scales. Firstly, we have the time �	

defined as

�	 	 	−1, �22�

which is the mean waiting time between two successive
pulses. Secondly, we can identify a time scale �p, defined as

�p 	
�0

��v�
, �23�

relating the mean amplitude of the pulses and the friction due
to the driving, so that �p is the ratio of two independent
external forces, due to the noise ��0� and due to the driving
�v�, respectively. In total there are therefore four different
time scales in our model: the inertial time �m, the relaxation
time �r, the mean waiting time �	, and �p. While the first two
are intrinsic time scales of the oscillator, the latter two arise
due to the particular type of external noise that we consider.
We will see below that the four time scales �m, �r, �	, and �p
fully specify the properties of the work fluctuations in our
model, and that the interplay of these times induces transi-
tions in the qualitative behavior of the work fluctuations.

One familiar example of such a transitional behavior is
due to the interplay of the inertial and the relaxation times,
Eqs. �20� and �21�, respectively. Using �m and �r we can
express the eigenvalues of the oscillator Eq. �2� in the form

�1,2 =
1

2�m
�− 1 � �1 − 4�m/�r� , �24�

where the index 1 corresponds to the � sign and 2 to the �
sign, respectively. We can thus formulate a critical condition
�cf. �4��,
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�m = �r/4 �25�

for the transition from real to complex eigenvalues. If �m
�r /4 the eigenfrequencies are complex and the influence of
the inertia on the dynamics manifests itself in time oscilla-
tory behavior. Moreover, in a regime where �m��r inertia
can be ignored and the system is effectively overdamped.
After neglecting the inertial term mẍ in Eq. �2� the equation
of motion in the overdamped regime can then be written as

ẋ�t� = −
1

�r
�x�t� − vt� +

1

�
��t� , �26�

or, respectively, in the co-moving frame

ẏ�t� = −
1

�r
y�t� − �v +

	�0

�
� +

1

�
z�t� , �27�

where we have used Eq. �14�. We see that the subtracted
mean value of Eq. �14� has the effect of an additional drift
force on the particle in Eq. �27�. Introducing an effective
velocity ve defined as

ve 	 v + 	�0/� , �28�

allows us to write Eq. �27� as

ẏ�t� = −
1

�r
y�t� − ve +

1

�
z�t� , �29�

The one-sidedness of the shot noise z�t� leads to singular
features of the work fluctuations in the overdamped regime,
as we discuss in more detail in the following.

A. Singularities in the overdamped regime

From the Langevin equation �Eq. �29�� we can infer two
important properties of the model in the overdamped regime.
Firstly, upon averaging of Eq. �29� we obtain

d

dt
�y�t�� = −

1

�r
�y�t�� − v . �30�

In the NESS the time derivative on the left-hand side �lhs� is
zero and the stationary mean position �y� is simply given by

�y� = − v�r. �31�

Then, using Eq. �5�, we find the mean value of the work in
the steady state

�W�� = − v��
0

�

�y�dt = �v2� . �32�

Clearly, �W�� is always positive as required by the second
law. These expressions for the mean position and mean work
are the same as in the Gaussian case �see, e.g., �2�� due to the
zero mean of the noise in both cases.

Secondly, we find that there exists a minimal value y* of
the position coordinate. This can be understood if we con-
sider Eq. �29� without z�t�, that is,

ẏ�t� = −
1

�r
y�t� − ve. �33�

In the NESS, where the lhs of Eq. �33� is zero, the particle
will reach a position y* given by

y* = − ve�r. �34�

Since the shot noise part z�t� can only move the particle in
the positive y direction, this position y* is the minimal posi-
tion the particle can reach, i.e., y* represents a cutoff in po-
sition space. The origin of this cutoff is the asymmetric form
of the noise ��t�, Eq. �14�, which is given as a superposition
of a shot noise part z�t� acting in the positive direction only
and of a drift part acting in the negative direction only. With-
out z�t� the particle will move until it reaches the position y*,
where the negative drift force is balanced by the positive
spring force. Under the influence of z�t� the particle can then
only reach positions to the right of y* �cf. Fig. 1�.

The presence of a position cutoff implies that the para-
bolic potential becomes effectively nonlinear: the effect of
y* is that of an infinite barrier in the potential. The effective
potential for the particle is given by the harmonic potential
U�y�, truncated at y* �cf. Fig. 1�. Since the effective nonlin-
earity arises due to the asymmetry of the PSN, our model
exhibits an effective interaction between the noise and the
potential.

From Eq. �5� we find that the work rate w�t� is given by

w�t� = − v�y�t� , �35�

i.e., proportional to the position. The position cutoff there-
fore implies a cutoff of the work rate w�t� so that we also
obtain a cutoff value of the work in time � in the NESS,
namely,

y* <y>

v

0

U(y)

y

FIG. 1. The truncated �effective� harmonic potential U�y� in the
comoving frame for v0 �regime �i��. The black bullet depicts the
particle at its mean position �y�, while the effective infinite barrier
for the particle position at y* is indicated with a dashed black line.
For v0 both the mean position �y� and the cutoff y* are always
negative �cf. Eqs. �31� and �34��.
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W
�
* = − v��

0

�

y*dt = − v�y*� = �vve� . �36�

We can also express the position and work cutoffs in terms of
the time scales �	 and �p. Using Eqs �22� and �23� allows us
to write y* of Eq. �34� in the form

y* = − v�1 + ��v�
�p

�	
��r, �37�

where ��v� denotes the sign function defined as

��v� = �+ 1, v  0

− 1, v � 0

0, v = 0.
� �38�

The work cutoff of Eq. �36� then reads

W
�
* = �W���1 + ��v�

�p

�	
� . �39�

Due to �00 the effective velocity, Eq. �28�, obeys al-
ways vev so that y*� �y�, i.e., the cutoff is always to the
left of the mean position. Both work and position cutoffs
have different characteristics depending on the sign of v and
the ratio of �p and �r. We distinguish three different regimes
which are important for the later discussion of the work fluc-
tuations �Sec. V�.

�i� v0 �see Fig. 1�. In this case the mean position is
�y��0 and the cutoff y* of Eq. �37� is also always �0. The
work cutoff W

�
* is then 0 �cf. Eq. �39�� and denotes the

maximal work done on the particle in time �. This is due to
the fact that for v0 the work rate w�t�, Eq. �35�, is larger
for smaller positions y�t�.

�ii� v�0 and �p�	 �see Fig. 2�a��. Both y* and W
�
* are

then negative �cf. Eqs. �37� and �39��. Moreover, the work
cutoff is now the minimal work performed over time � since
for negative v the work rate w�t� of Eq. �35� is smaller for
smaller positions.

�iii� v�0 and �p��	 �see Fig. 2�b��. In this case both y*

and W
�
* are positive. As in �ii�, W

�
* is the minimal work

performed over time �. However, a positive minimal work
value W

�
* implies that no negative work fluctuations can oc-

cur.

Due to the existence of the cutoff values y* and W
�
* the

distributions of both position and work are non-Gaussian,
unless one considers the Gaussian limit of the PSN Eqs.
�15�–�17�. In that limit y*→−� and W

�
*→ ��. We remark

that a similar work cutoff has been first observed in a Brown-
ian particle model, where the moving potential is given as a
nonlinear potential of the Lennard-Jones type �22�.

The position and work cutoff are properties of the over-
damped regime only. If the dynamics is influenced by inertia
the cutoffs disappear because the particle can actually “over-
shoot” the minimal position y*, following a strong fluctua-
tion of z�t� in the positive direction, due to its mass. How-
ever, this inertial effect is only relevant on short time scales
and disappears if ���m. In the asymptotic time regime there-
fore, in which we are mainly interested here, the fluctuation
properties of the particle are described by the overdamped
equation of motion and exhibit the singular features dis-
cussed above.

IV. CALCULATION OF THE CHARACTERISTIC
FUNCTION OF THE WORK FOR PSN

An elegant method to calculate the probability distribu-
tion of W� has been presented in �13,14�. This calculation is
based on a theorem for a generalized Ornstein-Uhlenbeck
process �23�, which is also applicable in the present case, if
we write equation of motion �4� in terms of a two-component
system for the position y�t� and velocity u�t� of the particle
in the co-moving frame,

ẏ�t� = u�t� , �40�

u̇�t� = −
1

�m
u�t� −

1

�m�r
y�t� −

1

�m
ve +

1

m
z�t� , �41�

using Eqs. �28� and �14�. In vector-matrix notation this equa-
tion can be expressed as a linear first-order differential equa-
tion of the form

ẏ�t� = My�t� + a + z�t� , �42�

where we have defined the vectors

y�t� 	 �y�t�
u�t�

�, a 	 � 0

−
1

�m
ve� ,

z�t� 	 � 0

1

m
z�t� � , �43�

while the matrix M is defined as

M 	 � 0 1

−
1

�m�r
−

1

�m
� . �44�

The derivation of the work distribution then proceeds along
the following steps:

U(y)

y* <y>0

v

y

(a) U(y)

v

y* <y> y0

(b)

FIG. 2. The effective harmonic potential in the co-moving frame
for v�0. Here, the mean position �y� is positive �Eq. �31�� while
the cutoff y* can be positive or negative �cf. Eq. �37��. �a� Negative
y*, if �p�	 �regime �ii��. �b� Positive y*, if �p��	 �regime �iii��.
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�1� The stochastic process y�t� of Eq. �42� describes a
generalized �two-component� Ornstein-Uhlenbeck process
�16�. In order to determine the characteristic functional of
y�t�, defined by

Gy�t��h�t�� 	 �exp�i�
0

�

h�t� · y�t�dt�� , �45�

for a two-component test function h�t�, we can then apply
the two-component version of the Cáceres-Budini theorem
�23� �see Appendix A�. This theorem states that Gy�t��h�t��
follows from the characteristic noise functional Gz�t��k�t��
via

Gy�t��h�t�� = eiy0·k0+ia·�0
�k�t�dtGz�t��k�t�� , �46�

where k�t� is given by

k�t� = �k1�t�
k2�t�

� 	 �
t

�

eMT�s−t�h�s�ds �47�

and

k0 	 k�t = 0� = �k1�0�
k2�0�

� . �48�

The initial position y0 and initial velocity u0 of the particle
are contained in y0	�y0 ,u0�T. Due to the zero first compo-
nent of z�t� �cf. Eq. �43��, the noise functional in Eq. �46� is
given by Gz�t��k�t��=Gz�t��k2�t� /m�, where Gz�t��g�t��, the
characteristic functional of the PSN z�t�, has the exact form
Eq. �10�.

�2� We obtain the characteristic function of the work

GW�
�q� 	 �eiqW�� �49�

by considering the particular test function �cf. �13,14��

h̃�t� = �− qv���� − t�
0

� , �50�

in the characteristic functional Gy�t��h�t��, where ��t� de-
notes the Heaviside step function. This can be seen immedi-
ately by substituting Eq. �50� for h�t� into the definition of
Gy�t��h�t��, Eq. �45�, i.e.,

Gy�t��h̃�t�� = GW�
�q� , �51�

due to the expression for the work W� �Eq. �5��.
�3� Finally, the work distribution follows by performing

the inverse Fourier transform of GW�
�q�. In the overdamped

regime this can be done analytically using the method of
steepest descent �see Sec. V�.

We now evaluate the functional k�t� using Eq. �47�. The
matrix exponential exp�MT can be determined by diagonal-
ization of the matrix M. Using the particular test function

h̃�t� of Eq. �50� one obtains then the components of k�t� in a
straightforward way,

k1�t� =
qv�

�1 − �2
��� − t���1

�2
�1 − e�2��−t�� −

�2

�1
�1 − e�1��−t��� ,

�52�

k2�t� =
qv�

�1 − �2
��� − t�� 1

�1
�1 − e�1��−t�� −

1

�2
�1 − e�2��−t��� .

�53�

Substituting these expressions into Eq. �46� leads to an
explicit expression for the characteristic function of the
work,

GW�
�q� = exp�iy0 · k0 − iq

vve�

�m��1 − �2�� 1

�1
2 ��1� + 1 − e�1�� −

1

�2
2 ��2� + 1 − e�2���

+
1

�	
�

0

�

� 1

1 − iq�0
v�

m��1 − �2�� 1

�1
�1 − e�1��−t�� −

1

�2
�1 − e�2��−t��� − 1�dt� , �54�

where y0 contains the initial conditions y0 and u0 and the
components of k0 are obtained from Eqs. �52� and �53� by
setting t=0. The work distribution now follows by perform-
ing the inverse Fourier transform of Eq. �54�, which we have
not been able to perform exactly. Nevertheless, Eq. �54� can
be readily used in order to determine the hierarchy of cumu-
lants for the work, which reveal an oscillatory behavior if the
influence of inertia is non-negligible. This is further studied
in Sec. VI. In the next section we focus on the overdamped

regime, where an analytical form of the work distribution
can be obtained.

V. ASYMPTOTIC FLUCTUATION PROPERTIES

In the asymptotic regime �→� inertial effects can be ne-
glected and the work fluctuations behave as in the over-
damped system. The characteristic function of the work in
the overdamped regime is obtained by taking the limit m
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→0 in Eq. �54�, when the eigenvalues Eq. �24� are given by
�1�−�r

−1 and �2�−�m
−1, respectively. The characteristic

function of the work Eq. �54� then becomes

GW�
�q� = exp�iy0k0 + iqW

�
*�1 − �1 − e−�/�r��r/��

+
1

�	
�

0

� � 1

1 + iq�0v�1 − e�t−��/�r�
− 1�dt� ,

�55�

where y0 is the initial position and k0 denotes the upper com-
ponent of k0 in the overdamped regime, which reads k0
=−q�v�1−e−�/�r�. The integral in Eq. �55� can be expressed
in closed form leading to an exact expression for the charac-
teristic function of the work,

GW�
�q� = �1 + iq�0v�1 − e−�/�r����r/�	�/�1+iq�0v�

�exp�iy0k0 + iqW
�
*�1 − �1 − e−�/�r�

�r

�
�

+
�

�	
� 1

1 + iq�0v
− 1�� . �56�

This expression simplifies if we consider the NESS of the
system, where the initial position y0 is drawn from the sta-
tionary nonequilibrium distribution. This distribution can be
found by solving the Fokker-Planck equation associated with
the Langevin equation �Eq. �29��. We obtain then for the
distribution of the particle position in the NESS �see Appen-
dix B 1�,

P�y� =
1

�� �r

�	
�

�

�0
� �

�0
�y − y*����r/�	�−1

e−�y−y*��/�0, �57�

where ���r /�	� denotes the Gamma function �24� with argu-
ment �r /�	. One notices that the exponent in the prefactor of
the exponential in Eq. �57� becomes negative if �r��	 so
that then P�y� diverges for y→y*. This singular behavior is
related physically to insufficient noise activation in the sys-
tem when �r��	. For, the time �	 is the average waiting time
between two successive pulses of the shot noise. Therefore,
if �r��	 the system relaxes fast compared to the time scale
of noise activation. In other words, the system relaxes “too
quickly” in between stochastic pulses and thus spends most
of its time at the position that it would assume deterministi-
cally without the shot noise, which is y*. Consequently P�y�
diverges for y→y* �cf. Fig. 3�.

We can now average the initial position y0 in the expres-
sion for the characteristic function, Eq. �56�, over the station-
ary distribution Eq. �57�. The result reads

GW�
�q� = �1 + iq�0v�1 − e−�/�r����r/�	��1/�1+iq�0v�−1�

�exp�iqW
�
* +

�

�	
� 1

1 + iq�0v
− 1�� , �58�

where W
�
* is given by Eq. �36�. The work distribution is

obtained by carrying out an inverse Fourier transform of Eq.

�58� and allows then an investigation of the work fluctuation
properties in the asymptotic regime.

A. Large deviation form of the work distribution

The inverse Fourier transform of Eq. �58� can be calcu-
lated analytically using the method of steepest descent. It is
convenient to introduce the scaled dimensionless value of the
work p, defined by

p 	
W�

�W��
. �59�

The work cutoff W
�
*, Eq. �39�, then gives rise to an extremal

value p* of the scaled work p, defined by

p* 	
W

�
*

�W��
= 1 + ��v�

�p

�	

. �60�

This expression implies that the three regimes of the work
fluctuations, discussed quantitatively in Sec. III �below Eq.
�39��, correspond to three different regimes of p*, namely: �i�
v0 implies p*1. �ii� v�0 and �p�	 implies p*�0.
�iii� v�0 and �p��	 implies 0� p*�1.

The distribution function of p, denoted by ���p�, is ob-
tained from the inverse Fourier transform of GW�

, Eq. �58� by

���p� =
�W��
2�

�
−�

�

GW�
�q�e−iqp�W��dq . �61�

Using Eq. �58� on the right-hand side �rhs� of Eq. �61� as
well as Eq. �32� and Eq. �36�, we see that the distribution
���p� can be written in the form

���p� =
�v2�

2�
�

−�

�

��q�e�h�q�dq , �62�

where the functions ��q� and h�q� are given by

��q� 	 �1 + iq�0v���r/�	��1/�1+iq�0v�−1�, �63�

and

�2 �1 0 1
0.0
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Τr � ΤΛ

Τr � ΤΛ
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12

3

FIG. 3. �Color online� The distribution of the particle position in
the NESS, P�y� of Eq. �57�. One observes the divergence for y
→y* if �r��	. The cutoff values are given by y

1
*=−1.25, y

2
*

=−2.0, and y
3
*=−2.5. Parameter values: �r=1.0, v=1.0, and �0

=0.5 �25�.
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h�q� 	 iq�v2�p* − p� +
1

�	
� 1

1 + iq�0v
− 1� , �64�

respectively.
For large � the integral in Eq. �62� will be dominated by

its saddle point and can be approximately calculated using
the method of steepest descent �26�. Neglecting terms of or-
der �−1/2 leads then to the saddle-point approximation of
���p� in the form

���p� �
�v2

�2�
� �

�h��q̄��
��q̄�ei�+�h�q̄�, �65�

where q̄ denotes the appropriate saddle point and � the angle
between the deformed integration path and the real axis.
Saddle-points are determined from the condition h��q̄�=0,
which, with Eq. �64�, reads

�1 + iq̄�0v�2 −
�0

�v�	�p* − p�
= 0. �66�

The solution of this quadratic equation is given by

q̄� =
i

�0v
�1 ��p* − 1

p* − p
� . �67�

Importantly, the square root ��p*− p� / �p*−1� is always real
since both p*− p and p*−1 are either both positive �v0� or
negative �v�0�, respectively. This means that the real part
R�q̄��=0 for all p and we can conclude that the appropriate
saddle point is

q̄− =
i

�0v
�1 −�p* − 1

p* − p
� , �68�

since the original integration path �the real axis� can be de-
formed to go through q̄− without crossing the pole at q
= i / ��0v�. Furthermore �=0 in Eq. �65�, as is required for a
real probability distribution, since h�q� is real for purely
imaginary q �cf. Eq. �64�� and therefore the path of steepest
descent through q̄− is parallel to the real axis �cf. the discus-
sion in Sec. IV of �27��.

Substituting the appropriate saddle point �Eq. �68�� into
the expressions for ��q�, h�q�, and h��q� yields for the
saddle-point approximation Eq. �65�,

���p� �
1

�4�

��/�	

�p* − 1�
��p* − p

p* − 1
�−��r/�	����p*−p�/�p*−1�−1�−�3/2�

�exp�−
�

�	
��p* − p

p* − 1
− 1�2� . �69�

With Eq. �60� we see that the distribution ���p� is com-
pletely specified by the time scales �r, �	, and �p, in addition
to the measurement time �.

One notices two different singularities appearing in Eq.
�69�. Firstly, the derivative of ���p� diverges for p→p* as
���p�� �p*− p�−1 in leading order. This means that the ap-
proach of ���p� to the cutoff p* has a vertical slope. Sec-

ondly, one notices that ���p� itself diverges for p→p* if
�r /�	�3 /2. However, for large � this divergence occurs only
in an isolated point and can be ignored.

We find that Eq. �69� yields an excellent approximation of
the distribution ���p� at least for ��10�r. This is shown in
Fig. 4 where we compare Eq. �69� with a numerical inverse
Fourier transform of GW�

and also with results from a direct
simulation of equation of motion �29� using a Poissonian
increment method �28�. For �=5�r one notices a slight de-
viation in the negative tail for p�−1 between the saddle-
point result and the numerical inverse Fourier transform. For
�=10�r the saddle-point approximation is in excellent agree-
ment with the inverse Fourier transform over the whole
range of p values.

For very large � the distribution ���p� exhibits the large
deviation form �29�

���p� � e−�I�p� �70�

with rate function

I�p� 	
1

�	
��p* − p

p* − 1
− 1�2

. �71�

The rate function I�p� of Eq. �71� is plotted separately for
v0 and v�0 in Figs. 5 and 6, respectively. In both cases
one observes the strongly asymmetric shape of the rate func-
tion, which attains its minimum at the most likely work
value, namely, at p=1, i.e., at the mean work value as ex-
pected.

�i� v0 �see Fig. 5�. The work cutoff here is p*1 and
denotes the maximal work done on the particle. As p→p*

the rate function I�p� approaches I�p*� with a vertical slope
and ends at the finite value I�p*�=1 /�	 �cf. Eq. �71��. The
left side of I�p� is unbounded and becomes asymptotically
linear for large negative p. From Eq. �70� it follows that the
work distribution ���p� decays exponentially for large nega-
tive p.

-3 -2 -1 0 1 2 3
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1

Π
τ(

p)

Inverse Fourier Transform

Saddle-point method

Simulation

τ = 5τr

τ = 10τr

FIG. 4. �Color online� Comparison of the analytic saddle-point
approximation for ���p�, Eq. �69�, with a numerical inverse Fourier
transform of GW�

as well as with results from a direct simulation of
equation of motion �29�. Parameter values: v=1, �r=1, �	=0.2, and
�p=0.5.
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�ii� v�0 and �p�	 �see dashed and dotted curves in Fig.
6�. The work cutoff is now p*�0 and denotes the minimal
work done on the particle. I�p� approaches the end point
I�p*�=1 /�	 with a vertical slope as p→p*. Now, the right
side of I�p� is unbounded and becomes asymptotically linear
for large p so that ���p� decays exponentially for large posi-
tive p.

�iii� v�0 and p��	. Here, the work cutoff is 0� p*�1
and no negative work fluctuations occur as becomes evident
in Fig. 6 �solid curve�. The behavior in the approach to the
cutoff and for large p is as in �ii�.

B. Fluctuation theorem

In the asymptotic regime �→� work distribution �69� has
the large deviation form Eq. �70�. In order to further discuss
the fluctuation properties of work it is convenient to consider
the dimensionless fluctuation function

f��p� 	
1

a�W��
ln

���p�
���− p�

, �72�

where the constant a is defined by

a 	
��	

�0
2 , �73�

and has the dimension of an inverse energy. In limits
�15�–�17�, where the PSN becomes thermal Gaussian noise,
the constant a is identical with the inverse temperature � so
that f��p� then agrees with the fluctuation function consid-
ered, e.g., in �2�.

The steady-state fluctuation theorem �SSFT�, Eq. �1�, pre-
dicts that f�p�	 lim�→� f��p�= p. From Eq. �70� we obtain
here instead

f�p� = 2�p* − 1�p + 2�p* − 1�2��p* − p

p* − 1
−�p* + p

p* − 1
� ,

�74�

defined on the interval �−p* , p*� �30�. We see that the SSFT
does not apply in our model, even though we have identified
a large deviation form of the distribution. As p→p* the fluc-
tuation function diverges like �p*− p�−1/2, i.e., the cutoff is
approached with a vertical slope �cf. Figs. 7 and 8�. How-
ever, f�p� itself remains finite at the cutoff and assumes the
value

f�p*� = 2�p* − 1�p* − 2�p* − 1�2� 2p*

p* − 1
. �75�

We now characterize the behavior of the asymptotic fluc-
tuation function f�p�, Eq. �74�, for the three different re-
gimes.

�i� v0 �see Fig. 7�. Here, f�p� of Eq. �74� has three
zeros at p0=0 and p�= �2�p*−1 �due to the antisymmetry
of f�p� we need not discuss the negative root p−�. The zero
p+ becomes significant when p*2, because then p* p+

and p can assume values in the interval �p+ , p*�. The crucial

�2 �1 0 1 2
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2.0

2.5

p��2.5

p��2.0

p��1.5
I�

p�

p

FIG. 5. �Color online� The rate function I�p�, Eq. �71�, for v
0 and �	=1, plotted as a function of p for three different p*

values. At every p*, I�p� assumes the finite value I�p*�=1 /�	=1
here, which is approached with a vertical slope. For large negative
p, I�p� becomes asymptotically linear. All curves correspond to re-
gime �i�.
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FIG. 6. �Color online� The rate function I�p� of Eq. �71� for v
�0 and �	=1, plotted as a function of p for three different p*

values. At every p* the rate function ends at the finite value I�p*�
=1 /�	=1 here, which is approached with a vertical slope. For large
positive p, I�p� becomes asymptotically linear. The dashed and dot-
ted curves correspond to regime �ii�, where p*�0. The solid curve
corresponds to regime �iii�, where 0� p*�1 and no negative work
fluctuations occur.
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FIG. 7. �Color online� The fluctuation function f�p�, Eq. �74�,
plotted as a function of p for various p* values in regime �i�. For
p*2, f�p� becomes negative if p� �p+ , p*�. The approach to f�p*�
is with a vertical slope, while f�p*� itself remains finite, Eq. �75�
�thin dashed curve�. For large p*, f�p� approaches the straight line
of the SSFT.
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observation is then that f�p� from Eq. �74� becomes negative
for p� �p+ , p*�. There exists therefore a parameter regime in
which negative fluctuations of a certain magnitude are more
likely to occur than corresponding positive ones �see Fig. 7�.
In fact, since p*=1+�p /�	 we find that p*2 if �p�	.

This property is due to the strongly asymmetric tails of
the work distribution ���p�: the negative tail decays expo-
nentially, while the positive tail decays more rapidly to the
cutoff at p*, so that ���p�����−p� for p values in the vi-
cinity of p* �cf. the discussion of the rate function in regime
�i�, below Eq. �70��. It is important to note that despite the
existence of a considerable negative regime of f�p�, the sec-
ond law is never violated: the mean value of the work is
always positive, �W��=�v2�.

�ii� v�0 and �p�	 �see Fig. 8�. In this case f�p� is zero
only at p=0 and increases monotonically for p→p* until the
finite value f�p*� is reached. For large p*, f�p� approaches
the straight line of the SSFT.

�iii� v�0 and �p��	. In this parameter regime no nega-
tive work fluctuations occur and the fluctuation function
f��p�, Eq. �72� can not be defined.

For both v�0 and v0 we observe a pronounced linear
regime of f�p� for small p values. This is a general conse-
quence of the large deviation form of ���p�: expanding the
rate function I�p� around p=0 and taking the ratio
���p� /���−p� leads to a cancelation of the quadratic orders
and therefore the linear term dominates up to order p3 in the
fluctuation function �cf. �29��.

C. Gaussian limit and the SSFT

In limits �15�–�17� PSN goes over into Gaussian noise. In
this limit we should therefore reproduce previous results for
a dragged Brownian particle in a parabolic potential �see,
e.g., �2,3��. In particular, we should obtain a Gaussian work
distribution and the work fluctuations should satisfy the
SSFT, Eq. �1�.

In order to demonstrate this we expand the characteristic
function of work, Eq. �58� in powers of �0. Retaining terms
up to second order in �0 yields

ln GW�
�q� � iq�v2� − q2�0

2v2� �

�	

−
�r

�	

�1 − e−�/�r�� .

�76�

This means that in the Gaussian limit of PSN the work dis-
tribution is Gaussian with mean �W��=�v2�, Eq. �32�, and
variance

�W�
2� − �W��2 = 2�0

2v2� �

�	

−
�r

�	

�1 − e−�/�r�� . �77�

For thermal Gaussian noise the fluctuation-dissipation theo-
rem requires that �0

2=�	��−1 �cf. Eq. �17��. In the asymptotic
regime we thus obtain from Eq. �77�

�W�
2� − �W��2 � 2�−1�W�� , �78�

i.e., the variance is proportional to the mean. Mean Eq. �32�
and variance Eq. �78� determine the distribution of the work
W�. For the distribution of the rescaled work p=W� / �W�� one
then obtains the Gaussian

���p� ����W��
4�

e−��W���p − 1�2/4, �79�

in the asymptotic regime. The saddle-point approximation
�Eq. �69�� yields the same result, if one expands with Eq.
�60� in powers of �p*−1�−1

�p* − p

p* − 1
� 1 +

1

2
� 1 − p

p* − 1
� −

1

8
� 1 − p

p* − 1
�2

− ¯ , �80�

where p*→ �� in the Gaussian limit. With the Gaussian
work distribution Eq. �79� the fluctuation function f��p�, de-
fined by Eqs. �72� and �73�, then satisfies lim�→� f��p�= p.
We therefore confirm that, in the limit where the PSN goes
over into thermal Gaussian noise, the SSFT holds.

Moreover, we can calculate correction terms to f��p� for
finite p*. If we use Eq. �80� and expand f��p� in powers of
�p*−1�−1 we obtain in lowest orders

f��p� � �1 −
3

8�p* − 1�3�p −
1

8�p* − 1�3
p3. �81�

One can then formulate an extension of the SSFT, Eq. �1�,
which takes into account the effect of the PSN close to the
Gaussian limit, i.e., for finite �but large� p*,

���p�
���− p�

� ec�p�1−�3+p2�/�8�p* − 1�3�. �82�

The correction term vanishes in the limit p*→ ��.

VI. INERTIAL EFFECTS FOR FINITE TIMES

For finite � inertial effects can be significant if �m is of the
order of �r or larger. The eigenvalues �1 and �2, determined
by Eq. �24�, become complex if �m�r /4. This condition
can likewise be expressed in terms of a critical mass m*

determined by �4�
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FIG. 8. �Color online� The fluctuation function f�p�, Eq. �74�,
plotted as a function of p for various p* values in regime �ii�. Using
the antisymmetry of f�p� with respect to p we plot only p� �0,
−p*�. The approach to f�p*� is with a vertical slope, while f�p*�
itself remains finite, Eq. �75� �thin dashed curve�. For large −p*,
f�p� approaches the straight line of the SSFT.
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m* 	
�2

4�
, �83�

so that inertial effects become significant when mm*. For
mm* the eigenvalues �1 and �2 of Eq. �24� are complex
conjugates and can be written as

�1,2 = � � i� , �84�

where we define

� 	 −
1

2�m
, � 	

1

2�m

�4�m/�r − 1. �85�

Complex eigenvalues lead to a time oscillatory behavior of
the position coordinate y�t�, which oscillates with frequency
�. Time oscillations are also manifest in the work distribu-
tion, as observed in �4� for Gaussian noise. In �4� it has been
shown that for large � the oscillation frequency of the fluc-
tuation function is the same as that for the position coordi-
nate �i.e., ��. Since our model is essentially the same
damped oscillator as was investigated in �4�, only driven by
a different noise, we expect a similar behavior of the work
fluctuations for mm*.

Even though we do not have an analytical expression for
the work distribution including inertia, we can investigate
inertial effects for the work fluctuations from the character-
istic function of the work Eq. �54� via the cumulants of the
work distribution cn���, defined as �16�

ln GW�
�q� = 


n=1

�
�iq�n

n!
cn��� . �86�

We thus obtain the cumulants by calculating the derivatives
of ln GW�

�q�,

cn��� = � 1

in

�
n

�q
n ln GW�

�q��
q=0

, �87�

which yields from Eq. �54� expressions for c1���, the mean,
and c2���, the variance of the work distribution,

�W�� =
v�

�1 − �2
�y0��1

�2
�1 − e�2�� −

�2

�1
�1 − e�1���

+ u0� 1

�1
�1 − e�1�� −

1

�2
�1 − e�2���

−
�v
m
� 1

�1
2 ��1� + 1 − e�1�� −

1

�2
2 ��2� + 1 − e�2���� ,

�88�

�W�
2� − �W��2 = 2

�0
2

�	
� v�

m��1 − �2��
2�

0

� � 1

�1
�1 − e�1��−t��

−
1

�2
�1 − e�2��−t���2

dt , �89�

and the nth-order cumulant reads

cn��� = n!
1

�	
� �0v�

m��1 − �2��
n�

0

� � 1

�1
�1 − e�1��−t��

−
1

�2
�1 − e�2��−t���n

dt , �90�

respectively. We note that in Eq. �88� the initial position y0
and initial velocity u0 of the particle appear explicitly. We
now focus on the behavior of the mean and the variance.
Using Eq. �84� allows us to rewrite the mean work Eq. �88�
in terms of trigonometric functions

�W�� =
v�

�2 + �2�y0�2� + e����2 − �2

�
sin����

− 2� cos������ − u0�1 + e����

�
sin����

− cos������� +
�v2

�m�r��2 + �2�2����2 + �2� + 2�

+ e����2 − �2

�
sin���� − 2� cos������ . �91�

Likewise, one can express the variance, Eq. �89�, in the form

�W�
2� − �W��2 =

2�0
2

�	��2 + �2�3� v
2�m�r�

�2�4��2� + ����2

+ �2� − 3���2 − 3�2� −
1

�
��2 + �2�2�1

− e2��� + 8�e�����2 − �2�sin����

− 2�� cos����� − e2������2 − 3�2�cos�2���

+ ��3�2 − �2�sin�2����� . �92�

Both mean and variance show an oscillatory decaying behav-
ior. The mean oscillates with frequency � while the variance
exhibits oscillations with a superposition of frequencies �
and 2�. For very large � we obtain from Eqs. �91� and �92�

�W�� � �v2� , �93�

�W�
2� − �W��2 � 2�0

2v2�/�	, �94�

i.e., we recover the mean and the variance of the overdamped
work distribution �cf. Eq. �32� and Eq. �77��, respectively, as
expected. The oscillatory behavior of the mean and the vari-
ance are shown in Fig. 9, where we plot the rescaled quan-
tities

A1��� 	
�W��
�v2�

, �95�

A2��� 	
�W�

2� − �W��2

2�0
2v2�/�	

, �96�

using Eqs. �93� and �94�, respectively. Both A1 and A2 con-
verge to 1 in the limit �→�.

Considering the higher-order cumulants, one can also re-
write the nth-order cumulant Eq. �90� in terms of trigonomet-
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ric functions. Without performing the calculation, one no-
tices that this would lead to decaying oscillations with a
superposition of frequencies � ,2� ,3� , . . . ,n�.

VII. SUPERPOSITION OF PSN AND THERMAL
GAUSSIAN NOISE

So far we have investigated the properties of the work
fluctuation of the dragged particle of Sec. II, when the noise
from the environment is given purely by external PSN. In
this section we investigate the effect of additional thermal
Gaussian noise on the fluctuation properties of the particle.
The additional Gaussian noise takes into account the effect
of an additional equilibrium heat bath on the dynamics. This
model can therefore represent a dragged Brownian particle,
which is subject to PSN. For a Brownian particle the thermal
fluctuations and the friction have the same physical origin,
namely, the surrounding heat bath �“water”�, so that the fric-
tion and the noise strength of the thermal noise are related
via a fluctuation-dissipation relation. On the other hand, we
assume that the PSN arises due to an external physical
mechanism that is independent of the thermal noise, which
implies that the two types of noises are statistically indepen-
dent.

Gaussian noise is symmetric so that the particle will now
be able to access all positions in the harmonic potential. Both
the position and the work cutoff of the purely PSN case,
discussed in Sec. III, are therefore expected to disappear. Our
quantitative investigations start from the equation of motion
for the comoving coordinate y in the overdamped regime

ẏ�t� = −
1

�r
y�t� − ve +

1

�
z�t� +

1

�
��t� , �97�

which is Eq. �29� with additional thermal Gaussian noise
��t�

���t�� = 0, �98�

���t���t��� = 2��−1��t − t�� , �99�

where � is interpreted as inverse temperature of the equilib-
rium heat bath. Equation �99� expresses the fluctuation-
dissipation relation between friction and noise strength �32�.
The characteristic noise functional of ��t� is given by �16�

G��t��g�t�� = exp�−
�

�
�

0

�

g�t�2dt� , �100�

for a test function g�t�. The characteristic functional of y�t�
can then be calculated analogous to the two-component case
treated in Sec. IV, using the theorem of Cáceres-Budini �23�.
One obtains �cf. Eq. �46�� �31�

Gy�t��h�t�� = eiy0k0−ive�0
�k�t�dtGz�t��k�t�/��G��t��k�t�/�� ,

�101�

where k�t� is given by

k�t� = �
t

�

e�t−s�/�rh�s�ds , �102�

and y0=y�t=0� as well as k0=k�t=0�. The superposition of
the two statistically independent noises z�t� and ��t� in Eq.
�97� leads therefore to the product of the corresponding noise
functionals in Eq. �101�. Substituting the noise functionals
Gz�t�, Eq. �10�, and G��t�, Eq. �100�, with the test function
k�t� /� as argument into Eq. �101� yields

Gy�t��h�t�� = exp�iy0k0 − ive�
0

�

k�t�dt −
1

��
�

0

�

k�t�2dt

+
1

�	
�

0

�

� 1

1 − i
�0

�
k�t�

− 1�dt� . �103�

From this characteristic functional with k�t� given by Eq.
�102� we can determine both the characteristic function of
the particle position and that of the work by choosing appro-
priate test functions h�t�.

A. Distribution of the particle position in the NESS

The characteristic function of the particle position is ob-
tained from Gy�t��h�t�� if we choose the test function h�t�
=h1��t− t1� �cf. Appendix B 2�. The distribution of the par-
ticle position in the NESS is then obtained by carrying out an
inverse Fourier transform of the characteristic function. De-
tails of this calculation are presented in Appendix B 2. The
result for the distribution can be written in the form of the
convolution integral

PGP�y� = �
−�

�

P�y��PG�y − y��dy�, �104�

where P�y� and PG�y� are the NESS distributions of the par-
ticle position in the purely PSN case and purely Gaussian
case, respectively. P�y� is given by Eq. �57� and PG�y� is
given by the Gaussian

PG�y� =���

2�
e−���/2�y2

. �105�

The superposition of the two independent noises in Langevin
equation �97� thus gives rise to a convolution of the corre-
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FIG. 9. �Color online� Oscillatory behavior of �a� the rescaled
mean A1���, Eq. �95�, and �b� the rescaled variance A2���, Eq. �96�,
for the initial conditions y0=u0=0 and various �m. In the limit �
→� both A1��� and A2��� converge to 1. Parameter values: �r=1,
�	=0.2, �0=0.5.
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sponding distributions. A closed form expression of the inte-
gral Eq. �104� is given in Appendix B 2 in Eq. �B18�.

In order to characterize the relative strength of the PSN to
the Gaussian noise we introduce the dimensionless noise ra-
tio B, defined as

B 	
��	

��0
2 , �106�

which represents the ratio of the noise strength of the Gauss-
ian noise, 2� /� �Eq. �99��, and the noise strength of the PSN
z�t�, 2�0

2 /�	 �cf. Eq. �13��. This means that large B indicates
a dominant influence of the Gaussian noise and small B that
of PSN. The limit case B=0 corresponds to the purely PSN
case �see below�.

We plot PGP�y� separately for �r��	 and �r�	, in the
Figs. 10 and 11 respectively, for different values of B.

In the case �r��	 �see Fig. 10� the distribution P�y� of
Eq. �57� exhibits a divergence at the position cutoff y* �cf.
solid red curve in Fig. 10�. Under the superimposed Gaussian

noise this divergence reduces to a maximum which shifts
more and more to y* the smaller the values of B. At the same
time one notices that in the approach to the maximum the
curves of PGP�y� for B=0.1 and B=0.01 are basically on top
of P�y� �cf. dashed black and dotted blue curves in Fig. 10�,
i.e., the right tail of PGP�y� approaches P�y� for small B. The
left tail on the other hand decays like a Gaussian.

In the case �r�	 �see Fig. 11� there is no divergence in
the distribution P�y�. For small B, PGP�y� approaches the
shape of P�y�, yet without exhibiting a cutoff. This can be
seen in the curve of PGP�y� for B=0.01 �cf. dashed black
curve in Fig. 11�, which lies on top of the curve of P�y�
�solid red curve� apart from a region in the vicinity of y*. For
any B0 the left tail of PGP�y� always extends beyond y*

and decays like a Gaussian, indicating that the position cutoff
vanishes due to the additional Gaussian noise.

In both cases PGP�y� becomes broader and broader for
increasing B, i.e., stronger Gaussian noise �higher tempera-
ture�.

B. Work fluctuations

From the characteristic functional Gy�t��h�t��, Eq. �103�,
we obtain the characteristic function of the work GW�

�q� in a
similar way as in the two-component case treated in Sec. IV,
by considering the test function �cf. Appendix C 1�

h̃�t� = − qv���� − t� . �107�

Substituting h̃�t� for h�t� into Eq. �103� leads to the charac-
teristic function of the work,

GW�
�q� = �1 + iq�0v���r/�	�/�1+iq�0v� exp�iqW

�
*�1 −

�r

�
�

− q2 �W�
�

�1 −
3

2

�r

�
� +

�

�	
� 1

1 + iq�0v
− 1�� ,

�108�

upon neglecting exponential terms in � and choosing the par-
ticular initial condition y0=0. In contrast to the purely PSN
case, where the initial position y0 has been sampled from the
NESS distribution �cf. Sec. IV�, we consider here a fixed
initial position for simplicity. In the �→� limit, in which we
are interested in here, the particular initial condition is irrel-
evant for the properties of the work fluctuations because the
work W� is extensive in � �cf. Eq. �5��. Therefore, a fixed
initial condition yields the same result for the rate function as
an average over the initial states.

The distribution of the rescaled work p is then given by
the inverse Fourier transform of GW�

�q�. This Fourier inver-
sion can be performed as in Sec. V, using the method of
steepest descent. Details of this calculation are presented in
Appendix C 1. The saddle point q̄ is now given by

q̄ =
i

�0v
rp, �109�

where rp is determined by solving the cubic equation
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FIG. 10. �Color online� The distributions of the particle position
PGP�y�, Eq. �104�, and P�y�, Eq. �57�, for �r��	 and various values
of the noise ratio B. P�y� exhibits a divergence at the cutoff y*=
−1.4, which is reduced to a maximum in PGP�y� due to the addi-
tional Gaussian noise. For B0 the left tails of the various curves
are Gaussian and the right tails exponential. Parameter values: �r

=1, �	=1.25, �0=0.5, v=1, and �r=1.
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FIG. 11. �Color online� The distributions of the particle position
PGP�y�, Eq. �104�, and P�y�, Eq. �57�, for �r�	 and various values
of the noise ratio B. For small B values PGP�y� approaches P�y�
�solid red curve�, which exhibits a cut-off at y*=−2.0. For B0 the
left tails of the various curves are Gaussian and the right tails ex-
ponential. Parameter values: �r=1, �	=0.5, �0=0.5, v=1.
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2Brp�rp − 1�2 − � p* − p

p* − 1
��rp − 1�2 + 1 = 0, �110�

where p* denotes the work cutoff of the purely PSN model,
Eq. �60�. Since there is no restriction on the possible p values
in the presence of the additional Gaussian noise, p* does not
have the meaning of a cutoff here, but nevertheless appears
as a parameter characterizing the PSN. An analysis of Eq.
�110� shows that this cubic equation has a unique real root
�1 for all possible values of B, p*, and p �see Appendix
C 2�. This particular root �denoted by rp in the following�
thus yields the correct saddle point q̄ since the integration
path in the saddle-point approximation can be deformed to
go through q̄ without crossing the pole at q= i / ��0v� in the
characteristic function Eq. �108�.

Using q̄ of Eq. �109� with the particular root rp, the
saddle-point approximation of the work distribution ��

GP�p�
can be obtained in a straightforward way and reads �cf. Ap-
pendix C 1�

��
GP�p� �� �/�	

4��1 + B�1 − rp�3�
�1 − rp���r/�	�/�1−rp�+3/2

�p* − 1�

� exp�−
�

�	
�rp� p* − p

p* − 1
��1 −

�r

�
�

− rp
2B�1 −

3�r

2�
� − � 1

1 − rp
− 1��� . �111�

Noting that p*=1+��v��p /�	, Eq. �60�, ��
GP�p� is com-

pletely specified by the times �, �r, �	, and �p and the param-
eter B. Furthermore, since rp�1 always, the work distribu-
tion is real for all p values so that there is no work cutoff as
expected.

We now investigate the behavior of the work distribution
in more detail in the asymptotic regime �→�, where ��

GP�p�
assumes the large deviation form

��
GP�p� � e−�IGP�p� �112�

with rate function

IGP�p� =
1

�	
�rp� p* − p

p* − 1
� − rp

2B − � 1

1 − rp
− 1�� .

�113�

In Figs. 12–14 we plot IGP�p� for various B values together
with the rate function I�p� of the purely PSN case, Eq. �71�.
As before we distinguish three different regimes of the work
fluctuations, namely, �i� v0 �Fig. 12�; �ii� v�0 and �p
�	 �Fig. 13�; �iii� v�0 and �p��	 �Fig. 14�. In all three
cases IGP�p� is asymmetric around its minimum at p=1 and
becomes broader for increasing B. One observes that IGP�p�
always extends beyond the work cutoff of the purely PSN
case. This becomes particularly evident when comparing the
B=0.1 curve of IGP�p� �dashed blue curve in Figs. 12–14
with I�p� �solid red curve�. IGP�p� lies virtually on top of I�p�
on the unbounded side of I�p�, but clearly deviates on the
bounded side of I�p� and eventually increases monotonically
beyond the cutoff. Moreover, in case �iii� no negative work

fluctuations can occur in the purely PSN case due to the
positive minimum work cutoff �cf. Eq. �60��, but IGP�p� does
indeed assume values for negative p. This means that in case
�iii� negative work fluctuations arise due to the additional
Gaussian noise.

The behavior in the tails of IGP�p� for p→ �� can be
determined from the properties of the saddle point q̄, Eq.
�109�. The saddle-point approximation, namely, implies that
the slope of the rate function IGP�p� is proportional to the
saddle point itself �cf. �29��, or more precisely �cf. Eq. �C12�
in Appendix C 1�

d

dp
IGP�p� = iq̄�v2 = − ��v�

rp

�p
, �114�

using Eqs. �109� and �23�. With Eq. �114� one can determine
the properties of the rate function as p→ �� as follows.

First, we consider the case v0. As discussed in Appen-
dix C 2, rp has the properties that rp→1 for p→−� and rp
�−p for p→� if v0. It then follows from Eq. �114� that
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FIG. 12. �Color online� The rate function IGP�p�, Eq. �113�,
plotted as a function of p for various B values together with I�p�,
Eq. �71�, in regime �i�. The right tail of I�p� ends at the cutoff value
p*=2.5, where I�p*�=1.0, while that of IGP�p� increases monotoni-
cally for any B0. Asymptotically the left tail of IGP�p� becomes
linear and the right tail quadratic. Parameter values: �	=1.0.
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FIG. 13. �Color online� The rate function IGP�p�, Eq. �113�,
plotted as a function of p for various B values together with I�p�,
Eq. �71�, in regime �ii�. The left tail of I�p� ends at the cutoff value
p*=−1.0, where I�p*�=1.0, while the left tail of IGP�p� increases
monotonically for any B0. Asymptotically the left tail of IGP�p�
becomes quadratic and the right tail linear. Parameter values: �	

=1.0.
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IGP�p� has an asymptotically linear left tail and an asymp-
totically quadratic right tail. Therefore, from this behavior of
the rate function one can conclude that the left tail of the
work distribution ��

GP�p� for large � is asymptotically expo-
nential, while the right tail is asymptotically Gaussian, if v
0.

For v�0 the situation is reversed because here rp� p for
p→−� and rp→1 for p→� �see Appendix C 2�. The left
tail of IGP�p� is thus asymptotically quadratic and the right
tail asymptotically linear. Consequently, the left tail of
��

GP�p� for large � is asymptotically Gaussian, while the
right tail is asymptotically exponential, if v�0.

One also notices in Figs. 12–14 that the rate function I�p�
of the purely PSN case represents a discontinuous limit of
the combined PSN and Gaussian case. For any arbitrarily
small nonzero B, both left and right tails of IGP�p� increase
monotonically, while for B=0, i.e., when IGP�p�= I�p�, the
rate function ends at a finite point for p= p*. This singular
limit is due to the cutoff singularity in the purely PSN case.

In order to further characterize the fluctuation properties
we define the dimensionless fluctuation function

f�
GP�p� 	

1

b�W��
ln

��
GP�p�

��
GP�− p�

, �115�

where the constant b is defined as

b 	
�

1 +
1

B

. �116�

The reasoning behind this definition is that b→a �Eq. �73��
for B→0 and that b→� for B→�, i.e., we recover the fluc-
tuation functions of the purely PSN case and the Gaussian
case, respectively, in the corresponding limits of the noise
ratio B. In the asymptotic time regime the fluctuation func-
tion fGP�p�	 lim�→�f�

GP�p� is given as

fGP�p� = �p* − 1�2�1 + B�� p

p* − 1
�r−p + rp� +

p*

p* − 1
�r−p − rp�

+ �rp
2 − r−p

2 �B +
1

1 − rp
−

1

1 − r−p
� , �117�

which is obtained by substituting the large deviation form
Eq. �112� with the rate function Eq. �113� into Eq. �115�. The
fluctuation function Eq. �117� is a function of p, p*, and B
only. We discuss the behavior of fGP�p� separately for the
three different regimes mentioned above.

�i� v0 �Fig. 15�. For large B, i.e., strong thermal Gauss-
ian noise relative to the PSN, fGP�p� becomes linear with
slope 1 in agreement with the SSFT. For small B values, i.e.,
when the Gaussian noise is weak, fGP�p� approaches the
fluctuation function of the purely PSN case, f�p� of Eq. �74�.
The important observation is that fGP�p� is negative for p
greater than a certain p0, where p0 denotes the value at which
fGP�p� intersects the p axis. However, in contrast to the
purely PSN case where the fluctuation function f�p� is
bounded by f�p*� �cf. Fig. 7�, here fGP�p�→−� as p→�.
This behavior is due to the tails of the work distribution
��

GP�p� in the asymptotic regime as discussed above: the
right tail of ��

GP�p� is Gaussian and thus decays more rapidly
than the exponential left tail. Consequently ��

GP�p� becomes
increasingly smaller than ��

GP�−p� for increasing p so that
fGP�p� is monotonically decreasing for large p. The negative
regime of the fluctuation function is thus even more pro-
nounced than in the purely PSN case �cf. solid red curve in
Fig. 15�, where the possible work values are bounded by the
cutoff p*.

�ii� v�0 with �p�	 �Fig. 16�. Here, fGP�p� is always
positive for p0. For large B values one recovers the SSFT
as expected. For small B values fGP�p� approaches the fluc-
tuation function of the purely PSN case. For any B0,
fGP�p� is monotonically increasing due to the different be-
havior in the tails of the work distribution ��

GP�p�, which
behave now oppositely to regime �i�: the left tail of ��

GP�p� is
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FIG. 14. �Color online� The rate function IGP�p�, Eq. �113�,
plotted as a function of p for various B values together with I�p�,
Eq. �71�, in regime �iii�. The left tail of I�p� ends at the cutoff value
p*=0.5, where I�p*�=1.0, so that no negative work fluctuations
occur in the purely PSN case. On the other hand, the left tail of
IGP�p� increases monotonically for any B0 and becomes asymp-
totically quadratic, while the right tail becomes asymptotically lin-
ear. Parameter values: �	=1.0.
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FIG. 15. �Color online� The asymptotic fluctuation function
fGP�p�, Eq. �117�, plotted as a function of p for various B values
together with f�p�, Eq. �74�, in regime �i�. The different behavior in
the tails of ��

GP�p� leads to a pronounced negative regime of
fGP�p�, which decreases monotonically for large p, while f�p� �solid
red curve� ends at a finite value when the cutoff p*=2.5 is reached.
For large B the SSFT is recovered �solid purple curve�.
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now Gaussian and decays faster than the exponential right
tail.

�iii� v�0 with �p��	 �Fig. 17�. In this parameter regime
the fluctuation function f�p� is not defined because there are
no negative work fluctuations. However, under the influence
of the Gaussian noise negative work fluctuations do arise, as
discussed above �cf. Fig. 14� and one can discuss the prop-
erties of fGP�p�. For large B, fGP�p� approaches the SSFT as
in the other two cases. For small B, fGP�p� becomes steeper
the smaller the B value and in fact diverges as B→�. This is
consistent with a vanishing probability of observing negative
work �cf. Eq. �115�� because the fluctuation function, defined
by Eq. �115�, diverges for ��

GP�−p�→0.

VIII. CONCLUDING REMARKS

�1� As one of our main results we have shown that the
work distribution in our two models—the dragged particle
with purely PSN and with PSN plus additional �thermal�
Gaussian noise—exhibits a large deviation form but that the
SSFT does not apply for general values of the parameters.

This result differs from previous studies of the nonequilib-
rium particle model considered here, where the noise statis-
tics was taken as white Gaussian noise �2� or white Lévy
noise �13,14�, respectively. In the Gaussian case the work
distribution has a large deviation form, which satisfies the
SSFT, while in the Lévy case there is no large deviation form
and the SSFT does not hold. The PSN case is in this sense
intermediate between the Gaussian and the Lévy cases.

�2� One of the striking signatures of the work fluctuations
in our two models is a parameter regime where the fluctua-
tion function is strongly negative. This feature is due to the
asymmetric tails of the work distribution for v0: if the
noise is purely PSN the left tail decays exponentially while
the right tail decays faster than exponential to the positive
work cutoff, where ���p*�=0. If we superimpose Gaussian
noise the cutoff vanishes and the positive tail of the work
distribution decays like a Gaussian. In that case the negative
regime of the fluctuation function is even more pronounced
and fGP�p� decreases monotonically for large p �cf. Fig. 15�.
The unusually large negative fluctuations in our model could
be useful for applications �cf. �33��.

�3� We have considered the work fluctuations in the
asymptotic regime of the NESS. Other well-known results of
nonequilibrium statistical mechanics are the transient fluc-
tuation theorems �TFTs� �11,34� and the nonequilibrium
work relation �Jarzysnki relation, JR� �35�, which could be
checked in our model in the case of PSN plus thermal Gauss-
ian noise. The TFTs and the JR only apply if the initial con-
dition of the work measurement is sampled from a thermal
equilibrium state �the JR requires in addition that the system
equilibrates at the end of the work measurement�.

It is then important to note that in our model the thermal
equilibrium state is not achieved simply by setting v=0. In
fact, the distribution of particle positions at v=0, PGP�y� of
Eq. �104�, is evidently different from the Boltzmann equilib-
rium distribution. In order to generate an equilibrium initial
state one would have to assume that initially the system is
only coupled to a thermal heat bath and that the PSN is only
“turned on” after the potential begins to move.

�4� Several variations in the PSN that we consider here
are possible. For example one could assume a pulse shape
different from the delta peaks of Eq. �6� or consider other
forms of the distribution of amplitudes 
���. In particular,
one could consider symmetric PSN which acts double sided,
e.g., by choosing a Gaussian distribution for 
��� or by add-
ing two PSN of the form of Eq. �6�, one with strictly positive
amplitudes � and one with strictly negative amplitudes, re-
spectively. One would expect that those features of our
model that are based on the asymmetry of the noise would
disappear under such symmetric double-sided PSN. This will
be discussed in more detail in a forthcoming publication.

�5� Our model with purely PSN represents an effectively
nonlinear system due to the infinite barrier in the potential
induced by the noise. A genuinely nonlinear system modu-
lated by a periodic field has been investigated in �39� and has
also been shown to violate the SSFT.

�6� Our results might be relevant in the context of analytic
frameworks for studying gene expression. Similar models as
ours have been considered in �36–38� to model the stochastic
dynamics of protein concentration in a cell. Here, the PSN
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FIG. 16. �Color online� The asymptotic fluctuation function
fGP�p�, Eq. �117�, plotted as a function of p for various B values
together with f�p�, Eq. �74�, in regime �ii�. f�

GP�p� increases mono-
tonically for large p, while f�p� �solid red curve� ends at a finite
value when the cutoff p*=1.0 is reached. For large B the SSFT is
recovered �solid purple curve�.
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FIG. 17. �Color online� The asymptotic fluctuation function
fGP�p�, Eq. �117�, plotted as a function of p for various B values in
regime �iii�. f�

GP�p� increases monotonically for large p. For small B
values the slope of fGP�p� becomes singular, while for large B the
SSFT is recovered �solid purple curve�. Here, p*=0.5.
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represents random bursts in protein production, which occur
with an exponentially distributed number of molecules.

�7� PSN occurs quite naturally in electric circuits, where
the discreteness of the electron charge causes time-dependent
fluctuations of the electric current. Our theory could thus be
realized in an experiment similar to the resistance-capacitor
dipole of �40,41�. If the Brownian Johnson-Nyquist noise is
sufficiently weak compared with the shot noise one might be
able to observe the strongly negative regime of the fluctua-
tion function �cf. Fig. 15�.

�8� We note that our theory could also be adapted to an
experiment similar to that of Mahadevan et al. �42�, where a
lubricated rod of a hydrogel sliding on a soft vibrating sub-
strate is considered as a model for biomimetic ratcheting
motion. Instead of the purely oscillatory external vibrations
of �42� one could induce external asymmetric PSN, as con-
sidered here, which could then lead to work fluctuations with
similar features as those presented here.

�9� Our dragged particle model under PSN and Gaussian
noise could also be realized experimentally by a micron-
sized colloidal particle in water confined by a laser trap �43�,
similar to the setup in �1,44,45�. Here, the fluid environment
is the origin of the thermal noise, as in the case of the stan-
dard Brownian motion. Additionally, stochastic pulses in the
form of PSN can be imposed on the colloidal particle using
modulations of the laser beam. In this setup the laser beam
gives rise to both the confining moving potential and the shot
noise. It would then be interesting to see if the negative
fluctuation function predicted by our theory could indeed be
measured.
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APPENDIX A: THE CÁCERES-BUDINI THEOREM

Consider the generalized multi-component Ornstein-
Uhlenbeck process

ẋ�t� = Bx�t� + ��t� , �A1�

where x�t� and ��t� are n-component column vectors and B is
an n�n square matrix. Let us assume that the characteristic
functional of the noise ��t� is known,

G��t��k�t�� 	 �ei�0
�k�t�·��t�dt� , �A2�

where · denotes a scalar product and k�t� is defined as an
n-component column vector �“test function”�. The Cáceres-
Budini theorem then states that the characteristic functional
of the process x�t� is obtained from G��t��k�t�� according to

Gx�t��h�t�� = eik0·x0G��t��k�t�� . �A3�

where x0 contains the initial conditions and the functional
k�t� is related to h�t� via

k�t� = �
t

�

e�s−t�BT
h�s�ds , �A4�

and k0	k�t=0�. The process x�t� is therefore completely
specified by G��k�t��, in particular, all cumulants of x�t� are
obtained by functional derivation of the rhs of Eq. �A3� with
respect to the components of h�t�.

This theorem follows upon substitution of ��t�= ẋ�t�−Bx
from Eq. �A1� into Eq. �A2�:

G��k�t�� = �ei�0
�k�t�·�ẋ�t�−Bx�t��dt� . �A5�

Partial integration yields

G��t��k�t�� = e−ik0·x0�ei�0
��−k̇�t�−BTk�t��·x�t�dt�

= e−ik0·x0�ei�0
�h�t�·x�t�dt� = e−ik0·x0Gx�t��h�t�� ,

�A6�

where in the second line we have set

h�t� = − k̇�t� − BTk�t� . �A7�

Consequently, k�t� is given as solution of Eq. �A7�, which
reads

k�t� = e−tBT
k0 − e−tBT�

0

t

esBT
h�s�ds . �A8�

Here, the initial condition k0 has to be chosen such that
limt→� k�t�=0.

APPENDIX B: NESS DISTRIBUTIONS
OF THE PARTICLE POSITION

In this appendix we determine the distribution of the par-
ticle position in the NESS for two cases: �i� The noise is
given by PSN. �ii� The noise is given by a superposition of
PSN and thermal Gaussian noise. We apply two different
calculation methods. In �i� we solve the Fokker-Planck equa-
tion corresponding to the Langevin equation for y�t�. In �ii�
we use the characteristic functional Gy�t��h�t��.

1. NESS distribution for PSN

The Fokker-Planck equation for the distribution p�y , t�
corresponding to the Langevin equation �29� reads �16�

�

�t
p�y,t� =

�

�y
� 1

�r
y + ve�p�y,t� + 	�

−�

�


����p�y − �/�,t�

− p�y,t��d� , �B1�

where 
��� is the distribution of the pulse amplitudes �. If
we write the shift −� /� in the second term with the help of
the shift operator exp�−�� /��� /�y and perform the integral
using the exponential distribution of amplitudes Eq. �8�, we
obtain
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�

�t
p�y,t� =

�

�y
� 1

�r
y + ve�p�y,t� − 	

�0

�

�

�y� 1

1 +
�0

�

�

�y
�p�y,t� .

�B2�

A solution of this differential equation can be found as fol-
lows. In the stationary state we have �p�y , t� /�t=0. Further-
more, since y�t� is a stationary process in a confining poten-
tial, the probability current vanishes as well. The Fokker-
Planck equation �B2� therefore simplifies to

� 1

�r
y + ve�P�y� − 	�0� 1

1 +
�0

�

�

�y
�P�y� = 0. �B3�

We now define

f�y� 	 � 1

1 +
�0

�

�

�y
�P�y� , �B4�

i.e., P�y� is obtained from f�y� via

P�y� = �1 +
�0

�

�

�y
� f�y� . �B5�

In turn, the equation for f�y� is only of first order,

� 1

�r
y + ve��1 +

�0

�

�

�y
� f�y� − 	

�0

�
f�y� = 0. �B6�

The function f�y� is thus given as

f�y� � e−�ȳ
y��y�+v�r�/��y�+ve�r��0/��dy�, �B7�

where ȳ denotes the lower integration limit. From Eq. �B2�
we then obtain a result for the distribution of y in the NESS,

P�y� �
	�0�r

��y − y*�
e−�ȳ

y����y�−y*�−	�0�r�/��y�−y*��0�dy�, �B8�

where y* is the minimal value of the position in the steady
state: y*=−ve�r �see Eq. �34�� and the lower integration limit
ȳ has to be chosen ȳy* for the integral to be well defined.
Setting ȳ=−v�r then yields

P�y� � ���y − y*�
	�0�r

�	�r−1

e−y�/�0. �B9�

The normalization constant can be calculated in a straight-
forward way and leads to the final result for the stationary
distribution

P�y� =
1

��	�r�
�

�0
� �

�0
�y − y*��	�r−1

e−�y−y*��/�0, �B10�

where ��x� denotes the Gamma function �24�. This result is
used in Sec. V in order to sample the initial condition in the
steady state. Furthermore, we note that the Fourier transform
of P�y� is given by

F�P�y� = �1 − i
�0

�
��−	�r

ei�y*, �B11�

where � is the Fourier variable conjugated to y.

2. Steady-state distribution for PSN with additional thermal
Gaussian noise

The characteristic functional of y�t� is defined as

Gy�t��h�t�� 	 �exp�i�
0

�

y�t�h�t�dt�� . �B12�

From Gy�t��h�t�� the characteristic function of the particle
position is obtained if we choose the test function

h1�t� 	 h1��t − t1� , �B13�

since substituting Eq. �B13� into Eq. �B12� yields

Gy�t��h1�t�� = �eih1y�t1�� 	 Gy�h1,t1� , �B14�

where the rhs is just the definition of the characteristic func-
tion of the position y. Substituting h1�t� in the expression for
Gy�t��h�t��, Eq. �103�, and taking the t1→� limit yields

Gy�h1� = �1 − i
�0

�
h1�−	�r

eih1y*−��r/2���h1
2
. �B15�

The NESS distribution PGP�y� is the inverse Fourier trans-
form of Gy�h1�. Noting that Gy�h1� can be written as a prod-
uct of the Fourier transform of P�y�, Eq. �B11�, and a Gauss-
ian, we can express the distribution PGP�y� as the
convolution integral

PGP�y� = �
−�

�

P�y��PG�y − y��dy�, �B16�

where P�y� is given by Eq. �B10�, and PG�y� is given by the
Gaussian

PG�y� =���

2�
e−���/2�y2

. �B17�

The convolution integral in Eq. �B16� can be evaluated in
closed form �46� and yields

PGP�y� =
1

��	�r�
�

�0
���

2�

1

2
����0

2

2�2 �−�	�r+1�/2

e−���/2��y − y*�2

������0
2

2�2 ��	�r

2
�1F1�	�r

2
,
1

2
,
1

2�����y − y*�

−
�

�0
���

�2� + ���
�0

�
�y − y*�

− 1���	�r + 1

2
�1F1�	�r + 1

2
,
3

2
,
1

2�����y − y*�

−
�

�0
���

�2�� , �B18�

where 1F1 denotes the confluent hypergeometric function of
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the first kind �24� and ��x� the Gamma function.

APPENDIX C: CALCULATION OF THE WORK
DISTRIBUTION FOR PSN AND GAUSSIAN NOISE

1. Saddle-point approximation and the rate function

The characteristic function of the work GW�
�q� is defined

as

GW�
�q� 	 �eiqW�� . �C1�

We can calculate GW�
�q� by substituting the particular test

function h̃�t� of Eq. �107� into the characteristic functional of
y�t�, defined by Eq. �B12�,

Gy�t��h̃�t�� = �e−iqv��0
�y�t�dt� = GW�

�q� . �C2�

Here, the last step follows due to definition of the work W�,
Eq. �5�.

The work distribution ��
GP�p� is then obtained as the in-

verse Fourier transform of GW�
, Eq. �108�, i.e.,

��
GP�p� =

�W��
2�

�
−�

�

GW�
�q�e−iqp�W��dq . �C3�

After substitution of Eq. �108� in Eq. �C3� we see that ���p�
of Eq. �C3� can be written in the form

��
GP�p� =

�v2�

2�
�

−�

�

��q�e�h�q�dq , �C4�

where the functions ��q� and h�q� are given by

��q� 	 �1 + iq�0v���r/�	�/�1+iq�0v�

� exp�− iqp*�v2�r +
3

2�
�v2�r� , �C5�

and

h�q� 	 iq�v2�p* − p� − q2�v2

�
+

1

�	
� 1

1 + iq�0v
− 1� ,

�C6�

respectively. For large � the integral in Eq. �C4� will be
dominated by its saddle-point q̄, which is determined by the
condition h��q̄�=0. Straightforward algebra then yields

q̄ =
i

�0v
rp, �C7�

where rp is determined by solving the cubic equation

2Brp�rp − 1�2 − � p* − p

p* − 1
��rp − 1�2 + 1 = 0. �C8�

This cubic equation is analyzed in more detail in Appendix C
2.

The saddle-point approximation of ��
GP�p� is given by

��
GP�p� �

�v2

�2�
� �

�h��q̄��
��q̄�ei�+�h�q̄�, �C9�

where � denotes the angle between the deformed integration
path and the real axis. The result for ��

GP�p� after substitu-
tion of the appropriate saddle point q̄, Eq. �C7�, is presented
in Eq. �111�.

From Eq. �C9� one can directly derive an expression for
the rate function IGP�p�. A comparison of Eq. �C9� with the
large deviation form Eq. �112� yields

IGP�p� = − h�q̄� , �C10�

where h�q̄� of Eq. �C6� is more precisely given as h�q̄�
=h�q̄�p� , p�, i.e., h�q̄� depends on the dimensionless work
value p via the saddle-point q̄�p� and via p directly. It then
follows from Eq. �C10� that

d

dp
IGP�p� = −

d

dp
h�q̄�p�,p�

= −
�

�q̄
h�q̄�p�,p�q̄��p� −

�

�p
h�q̄�p�,p� .

�C11�

The first term vanishes due to the property of the saddle-
point h�q̄�p� , p�=0. The slope of the rate function is there-
fore given by

d

dp
IGP�p� = −

�

�p
h�q̄�p�,p� = iq̄�v2, �C12�

by differentiation of Eq. �C6�. The fact that the slope of the
rate function is given by the saddle point is a general result
of the theory of large deviations �cf. �29��.

2. Analysis of the cubic roots

The cubic equation �C8� can be written in the normal
form

r3 − �2 +
�

2B
�r2 + �1 +

�

B
�r +

1 − �

2B
= 0, �C13�

where

� 	
p* − p

p* − 1
. �C14�

Although we could use Cardano’s formula to investigate the
behavior of the roots as functions of B and �, we obtain the
same information using simple calculus. We define the func-
tion

f�r� 	 r3 − �2 +
�

2B
�r2 + �1 +

�

B
�r +

1 − �

2B
. �C15�

Setting the derivative of f�r� to zero leads to simple expres-
sions for the location of the extrema of f�r�, given by
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r1 = 1, r2 =
1

3
+

�

3B
. �C16�

Since the coefficient in the cubic term of f�r� is 0, f�r� is
monotonically decreasing for r→−� and monotonically in-
creasing for r→�. This implies that, if r2r1, f�r� has a
maximum at r1 and a minimum at r2. On the other hand, if
r2�r1, f�r� has a maximum at r2 and a minimum at r1. By
substitution we find that f�r1�=1 / �2B�, i.e., f�r1� is positive
for all values of B. Consequently, also f�r2�1 / �2B� if r2
�r1. From this information about the extrema of f�r� we can
conclude that f�r� must intersect with the r axis either when
approaching the maximum at r1=1, if r2r1, or when ap-
proaching the maximum at r2, if r2�r1. Therefore, there
exists always a real root r̄�1 of the cubic equation �C8�,
which is the appropriate root for the saddle point q̄, Eq.

�109�, because the integration path in Eq. �C4� can be de-
formed to go through q̄ without crossing the pole in the
characteristic function GW�

, Eq. �108�, at q= i / ��0v�.
Moreover, the behavior of this root under a change of �

can be assessed qualitatively from this analysis. For large �,
r̄ remains in the vicinity of r1 so that r̄→1 for �→�. On the
other hand, for negative �, r̄ remains in the vicinity of r2,
which is proportional to � �cf. Eq. �C16��, so that qualita-
tively r̄�� for �→−�. These results can also be obtained
from Cardano’s formula for the three roots of Eq. �C8�.

Since � is given by Eq. �C14�, where p*=1+��v��p /�	,
Eq. �60�, we thus find that

�i� v0: r̄→1 for p→−� and r̄�−p for p→�.
�ii� v�0: r̄→1 for p→� and r̄� p for p→−�.
This behavior of the root r̄ determines the properties of

the tails of the rate function IGP�p� due to Eq. �C12�.
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